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Localized finite-amplitude disturbances and selection of solitary waves
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It turns out that evolution of localized finite-amplitude disturbances in perturbed KdV equation is qualita-
tively different compared with conventional small-amplitude initial conditions. Namely, relatively fast solitary
waves, with one and the same amplitude and velocity, are formed ahead of conventional chaotic-like irregular
structures. The amplitude and velocity of the waves, obtained from the asymptotic theory, are in excellent
agreement with numerics.

PACS number~s!: 47.20.Ky, 47.35.1i
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I. INTRODUCTION

The subject of our study is the following model equatio

h t12a h hx1b hxx1c hxxx1d hxxxx1s~h hx!x50,
~1!

where a,b,c,d,s are constants, and 0<x<L. This model
appeared in context of thin liquid films@1,2#, Benard-
Marangoni convection in shallow layers@3,4#, and other sys-
tems@5#. The similar equation governs evolution of longit
dinal strain waves in an elastic rod embedded in viscoela
external medium@6#. Typically, h(x,t) denotes surface de
viation from its steady-state flat position. The coefficients
Eq. ~1! depend upon parameters of the system. Solution
Eq. ~1! allow us to shed a light into subtle problems of a
plicability of long-wavelength weakly nonlinear asymptot
models to the original physical problems@5#.

One may consider Eq.~1! as a slightly dissipation-
perturbed KdV equation@4,7,8#, where b,d,s are much
smaller thana andc. As a result, Eq.~1! possesses the exa
solutions in the form of localized nonlinear waves of perm
nent form, or dissipative solitary waves; the existence of
exact solution requires constraints on the coefficients, s
as c52 a d/s @5,9,10#. Solutions of Eq.~1! in form of
asymptotic travelling solitary wave@4,7,8# are stable agains
small arbitrary perturbations@7#. More complicated travel-
ling wave solutions were studied using the phase diag
analysis@11,12#. Ultimately, the mentioned works deal wit
the ODE reduction of Eq.~1! through travelling wave as
sumption. As far as we know, the unsteady process of s
tary wave formation was not studied.

Equation ~1! appears also as an extension of t
Kuramoto-Sivashinsky~KS! model, with small dispersion
and backward quadratic diffusion, i.e., for smallc ands @5#.
As was found in Ref.@5#, for sufficiently small damping
(s,sc), any small-amplitude initial noiselike function wil
explode in a finite time. For the larger damping,s.sc ,
small-amplitude initial data evolves into finite-amplitude
regular patterns. As a result, critical value of dampingsc
divides the region of unconditional blow-up, from the regi
where small-amplitude disturbances give rise to fini
amplitude patterns. For higher damping, patterns beco
PRE 621063-651X/2000/62~4!/4959~4!/$15.00
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spatially ordered. Finally, for the damping large enough,
modes are linearly stable. However, even the stable patt
may be destroyed if strongly perturbed@5#. For the relatively
weak dispersion (ubu<0.1, Fig. 1 in@5#!, it was concluded
that the solitary waves are in the blow-up parameter ran
and cannot materialize@5#.

The subject of the present work is to find how these s
tary wavescan materialize, and to analyze the process
their formation and selection. It turns out that for sufficien
strong dispersion the solitary waves found in@5,9,10# are
realizable. We develop the theory to describe the unste
process of solitary waves selection in the case whenb,d,s
are small. These solitary waves can be formed only from
localized, finite-amplitude initial conditions. The gener
mechanism of the waves survival is similar to that found
Ref. @13#: the solitary waves travel faster, and therefore
cape the destructing influence of growing disturbances
hind. As a result, depending on initial conditions, irregu
and solitary waves may coexist simultaneously, and be se
rated in space.

II. ANALYTICAL DESCRIPTION OF DISSIPATIVE
SOLITARY WAVES FORMATION

The key point of our study is to consider model~1! as
KdV-perturbed equation. We are interested in extraction
the leading-order terms describing the slow variation of
soliton’s parameters. Assume that (b,d,s)5«(B,D,S), and
«!1. We follow the uniformly valid asymptotic procedur
developed in Ref.@14#. We suggest thath depends upon a
fast variablej and a slow timeT, such as

jx51, j t52V~T!, T5« t.

Then Eq.~1! becomes

c hjjj2V hj12a h hj

1« @hT1B hjj1D hjjjj1S~h hj!j#50. ~2!

The solution of Eq.~2! is sought in the form

h~j,T!5h0~j,T!1« h1~j,T!1•••. ~3!
4959 ©2000 The American Physical Society
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We are interested in studying localized solutions vani
ing together with its derivatives atuju→`. Then the leading
order solution is

h05
6 c

a
S2cosh22~Sj!, S5S~T!. ~4!

Here S(T) is a slowly varying function, andV54c S2.
From the solvability condition for nonsingular solution
Eq. ~2! at order« @14# follows:

ST85
8

15
S3~B1P S2!. ~5!

Here

P5
4

7 S 6
c

a
S25D D . ~6!

We omit standard arguments of the asymptotic proced
giving only its short sketch. Functionh1(j,T) is a solution
of linear inhomogeneous ODE; it will contain therefore fr
parameters depending onT such asS(T) in the leading order
problem. Its definition allows us to satisfy solvability cond
tion in the next order problem and to avoid secular terms
the asymptotic expansion. Higher order approximations m
be studied similarly.

Equation~6! allows us to find the variation of the ampl
tude and velocity of the soliton in time. The behavior ofS
depends on the signs ofB and P and on the value ofS0
[S(T50). Indeed, when bothB and P are positiveS di-
verges while for both negative values it will vanish. ForB
,0, P.0 the parameterS vanishes ifS0,A2B/P while it
diverges ifS0.A2B/P.

In the case of divergence, the explicit expression of
blow-up time~‘‘time-of-life’’ ! is

T5
4 P

15B2
lnU S0

2P

B1P S0
2U1

4

15B S0
2

. ~7!

Note that in this case the initial assumption about slow e
lution of soliton’s parameters is violated: near blow-up, so

FIG. 1. Blow-up~a! and damping~b! of the initial conditions.
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ton changes fastly. Nevertheless, it is interesting to comp
this formal prediction with numerically evaluated dynamic
which is done in the next section.

In the case of damping,Svanishes whenT tends to infin-
ity. The most interesting case occurs whenB.0, P,0,
when S tends toA2B/P independent ofS0. Relation ~5!
may be directly integrated giving the implicit dependence
S on T:

T5
4 P

15B2
lnUS0

2~B1P S2!

S2~B1P S0
2!
U2

4~S0
22S2!

15B S2 S0
2

. ~8!

Note that expression~8! provides an analytical descriptio
of the time-dependent process of the selection of the soli
wave~4!. As was mentioned in Ref.@5#, for sufficiently large
disturbances the backward diffusion term (hhx)x becomes
dominant, and leads to blow-up. Equation~5! does not allow
us to capture this subtle effect; probably, the asymptotic p
cedure should be carried further to describe the phenome

In the case of selection, if we additionally assumec
52aD/S, the asymptotic dissipative soliton~4! will tend to
the exact travelling solitary wave solution of Eq.~1! @9,10#.
Noteworthy is that this cannot be attained from infinitesim
initial disturbances@5#. The result of our time-dependen
analysis agrees with the results of earlier stability analyse
quasistationary solitary waves@4,7#.

In the next section, we analyze Eq.~1! numerically to
compare with analytical results given in this section. We
especially interested in the process of selection of solit
waves.

III. NUMERICAL STUDY OF SOLITARY WAVES

To simulate Eq.~1!, the following numerical technique
has been employed. We define the typical wave numbekc

5Ab/2d corresponding to the most unstable linear mode
Eq. ~1!. The corresponding wavelength islc52p/kc . The
length of spatial domain was chosen to be 256lc , i.e., rather
long. At the same time, the number of discretization poi
was chosen to be 4096, i.e.,lc is covered by 16 points. The
latter ensures fair resolution of the whole solutions co
puted. Periodic boundary conditions have been used
simulations. The pseudospectral technique was employed
the spatial discretization and the Runge-Kutta fourth or
scheme for the time advance. The time step was chosen
0.01. The tests with smaller time steps and better resolu
gave indistinguishable results. The control of the simulatio
in the Fourier space shows the very good resolution of
computed solutions.

Note that the previous section describes the evolution
soliton’s parameters; so, formally, we can apply the obtain
results only to the initial data in the form of solitons. It
clear, however, that this type of initial conditions is ve
restrictive. We therefore use general localized initial con
tions ~usually, in the from of Gaussian!. Since b,d,s are
small, at the first stage, the dynamics of the initial conditio
is expected to be governed by the KdV equation and
solitons will be formed on this preliminary stage. The sele
tion process, which is the subject of our interest, is expec
to appear at later times, when solitons are already form
Therefore, we can compare the proposed theory with num
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ics even for rather arbitrary localized initial conditions.
First, it has been checked that the damping, and the

dency to blow-up have been observed at the values of c
ficients found in the previous section. Numerical results
shown on Fig. 1. For the damping,«50.1, a51, B521
,0, c51, D56/5, S522, so P5272/7,0. In the case
of blow-up, «50.1, a51, B51.0, c51, D56/5, S52,
so P524/7.0. For the blow-up, we found that the puls
tends to grow rapidly at the timet* rather close to the pre
dicted t* 5T* /« from Eq. ~7! ~details of numerics are omit
ted!. As was mentioned, the description of the fast blow-
process formally contradicts the initial assumptions of sl
variation of soliton’s parameters. It is remarkable that
asymptotic procedure captures blow-up, and is valid m
further than formal parameter range.

Selection of dissipative solitons occurring atB.0,P,0.
We present here the results of simulations for the follow
parameter values:«50.1, a51, B51.0, c51, D56/5,
S522; therefore,P5272/7. The asymptotic valueS` of
S(T) at T→`, obtained from Eqs.~4!, ~6!, is S`5A2B/P
50.312. The asymptotic amplitude of the solitary wave
6cS̀2 /a50.583, and its asymptotic velocity isV54c S̀2

50.389. We consider both the selection occurring from ‘‘b
low’’ when the magnitude of an initial Gaussian pulse
smaller than that of the eventually selected solitons, Fig
and the selection from ‘‘above’’ when the selected solito
amplitude is smaller than that of the initial pulse magnitu
Fig. 3. Note that only a part of long spatial domain is sho
on Figs. 2 and 3 to make the evolving structures distingu
able. One can see in Fig. 2 that up to the timet;120 an
initial Gaussian pulse with the magnitude 0.3,0.583 and
width 36 breaks into a train of three localized pulses align
in row of decreasing magnitude. Due to smallness of«, the

FIG. 2. Selection of solitary wave from ‘‘below’’; initial condi-
tion is a Gaussian profile with amplitude 0.3 and width 36 un
only a part of the long spatial domain is shown here.
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influence of the dissipative non-KdV terms is small at th
stage. This may be seen by comparison of solutions of
~1!, shown as solid lines, with pure KdV case,B5D5S
50, shown by dashed lines. At later stages the initial pu
transforms into a train of the solitary waves. For nonzero«,
amplitude and velocity of each solitary wave tend to t
values 0.585 and 0.38 in agreement with the theory of sin
solitary wave selection, while each of three KdV solito
continues propagation with its own amplitude and veloci
Unequal spacing between equally high crests reflects
original separation of the solitons in the KdV stage wh
higher solitons travel faster. The tail behind the train of so
tary waves appear as a result of long wave instability@5,15#.
These irregular waves cannot be described by the theory
posed in the previous section. The solitary waves h
higher velocity than the velocity of growing wave packet. A
a result, the solitons escape the destructive influence of
tail behind. This mechanism was reported in Ref.@13# in
context of close dynamic equation. We see on the last sta
that the magnitude of the tail saturates. All these structu
are quite well resolved, robust and similar to those found
Refs.@5,15#.

The selection process realized from ‘‘above’’ is shown
Fig. 3 when initial Gaussian pulse has magnitude 1.0.583
and width 12. Two equal solitary waves with amplitud
0.585 and velocity 0.38 appear as a result ofdecreaseof the
magnitude of the initial pulse. Again the comparison w
pure KdV case is shown by dashed lines. All features of
selection process are similar to the selection from ‘‘below

Note that the localization of the disturbances in space
a crucial role here. If we consider conventional sma
amplitude noise as initial condition, similar to those cons
ered in Ref.@5#, the growing long-wavelength disturbance
will destroy the possible formation of the solitary waves~the

;

FIG. 3. Selection of solitary wave from ‘‘above’’; initial condi
tion is a Gaussian profile with amplitude 1 and width 12 units; o
a part ob the long spatial domain is shown here.
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results of numerical simulations are not shown here!. Besides
this, it is important to mention the significance of the pe
odic boundary conditions. After sufficiently long time, so
tons, moving faster than the irregular waves, will reach
end of the computational domain, will appear at the beg
ning of the domain, will further reach and collide with th
irregular waves, and will be ultimately destroyed~not shown
here!. This is the reason for consideration of long spat
interval — to allow the waves to evolve naturally and
separate, without collision. Simulations of Eq.~1! with other
values of parameters such thatB.0,P,0, which are not
reported here, show the same features of the selection
cess as described above.

IV. CONCLUSION

We considered Eq.~1! in the case when it could be re
garded as a perturbed KdV equation, i.e., whenb,d,s are
small. Solutions in the form of soliton with slowly varyin
parameters are considered. Solvability condition, based
standard asymptotic technique, leads to explicit equation
scribing the evolution of soliton’s parameters. It turns o
that three scenario are possible: blow-up, damping, and
lection. In the case of blow-up, the asymptotic techniq
predicts the ‘‘time-of-life’’ which is quite close to numeri
cally evaluated one. We conclude therefore that in this c
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the asymptotic technique is valid out of the range of its f
mal applicability. In the case of selection, the theory predi
the amplitude and velocity of the selected solitons with e
cellent accuracy. It is interesting that in this case the se
tion of the solitary waves is accompanied by developmen
irregular waves behind the solitary waves. The solitons tra
faster, and escape therefore the destruction by the tail@13#.

As was found in Ref.@5#, for small dispersion~small c)
the solitary waves fall in the range of blow-up, and therefo
cannot materialize. We conclude that for sufficiently stro
dispersion~when KdV-part is a leading player, as consider
here!, the solitary waves can materialize. Besides this,
revealed that solitary waves and irregular waves found
Refs. @5,15# may coexist simultaneously, being separated
space.
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