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Localized finite-amplitude disturbances and selection of solitary waves
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It turns out that evolution of localized finite-amplitude disturbances in perturbed KdV equation is qualita-
tively different compared with conventional small-amplitude initial conditions. Namely, relatively fast solitary
waves, with one and the same amplitude and velocity, are formed ahead of conventional chaotic-like irregular
structures. The amplitude and velocity of the waves, obtained from the asymptotic theory, are in excellent
agreement with numerics.

PACS numbdss): 47.20.Ky, 47.35+i

I. INTRODUCTION spatially ordered. Finally, for the damping large enough, all
modes are linearly stable. However, even the stable patterns
The subject of our study is the following model equation: may be destroyed if strongly perturbgsl. For the relatively
weak dispersion|3|<0.1, Fig. 1 in[5]), it was concluded
et 2a n 9yt b 7, € Byt d Dyt 0(17 1) =0, that the solitary waves are in the blow-up parameter range,
(1)  and cannot materialiZeb].

The subject of the present work is to find how these soli-
where a,b,c,d,o are constants, and<Ox<L. This model tary wavescan materialize, and to analyze the process of
appeared in context of thin liquid fiim§1,2], Benard- their formation and selection. It turns out that for sufficiently
Marangoni convection in shallow lay€el3,4], and other sys- strong dispersion the solitary waves found[§9,1Q are
tems[5]. The similar equation governs evolution of longitu- realizable. We develop the theory to describe the unsteady
dinal strain waves in an elastic rod embedded in viscoelastiprocess of solitary waves selection in the case whegho
external mediuni6]. Typically, 7(x,t) denotes surface de- are small. These solitary waves can be formed only from the
viation from its steady-state flat position. The coefficients inlocalized, finite-amplitude initial conditions. The general
Eg. (1) depend upon parameters of the system. Solutions ghechanism of the waves survival is similar to that found in
Eq. (1) allow us to shed a light into subtle problems of ap- Ref.[13]: the solitary waves travel faster, and therefore es-
plicability of long-wavelength weakly nonlinear asymptotic cape the destructing influence of growing disturbances be-
models to the original physical problerfis]. hind. As a result, depending on initial conditions, irregular

One may consider Eq(1l) as a slightly dissipation- and solitary waves may coexist simultaneously, and be sepa-
perturbed KdV equatiori4,7,8, where b,d,c are much rated in space.
smaller thama andc. As a result, Eq(1) possesses the exact

solutions in the form of localized nonlinear waves of perma- || ANALYTICAL DESCRIPTION OF DISSIPATIVE

nent form, or dissipative solitary waves; the existence of an SOLITARY WAVES FORMATION

exact solution requires constraints on the coefficients, such

as c=2ad/o [5,9,10. Solutions of Eq.(1) in form of The key point of our study is to consider mod@) as

asymptotic travelling solitary wavigt, 7,8 are stable against KdV-perturbed equation. We are interested in extraction of
small arbitrary perturbationf7]. More complicated travel- the leading-order terms describing the slow variation of the
ling wave solutions were studied using the phase diagrargoliton’s parameters. Assume that,gd,0)=¢(B,D,X), and
analysis[11,12. Ultimately, the mentioned works deal with £<1. We follow the uniformly valid asymptotic procedure
the ODE reduction of Eq(1) through travelling wave as- developed in Ref[14]. We suggest thay depends upon a
sumption. As far as we know, the unsteady process of solifast variableé and a slow timeT, such as

tary wave formation was not studied.

Equation (1) appears also as an extension of the &=1, &=-V(T), T=st.
Kuramoto-Sivashinsky(KS) model, with small dispersion
and backward quadratic diffusion, i.e., for smalind o [5]. Then Eq.(1) becomes
As was found in Ref[5], for sufficiently small damping
(o<o.), any small-amplitude initial noiselike function will Cngee— V met2am
explode in a finite time. For the larger damping> o,
small-amplitude initial data evolves into finite-amplitude ir- +e[ 71+ B 9g e+ D nggee t 2 (0 1) ]=0. (2)

regular patterns. As a result, critical value of damping

divides the region of unconditional blow-up, from the region  The solution of Eq(2) is sought in the form

where small-amplitude disturbances give rise to finite-

amplitude patterns. For higher damping, patterns become (&ET)=n9(&,T)+e p(ET)+ . 3
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(a) Blowup ton changes fastly. Nevertheless, it is interesting to compare
j\ this formal prediction with numerically evaluated dynamics,
o A which is done in the next section.
£ AL In the case of damping; vanishes wheiT tends to infin-

g ity. The most interesting case occurs whBp-0, P<0,

when S tends to/—B/P independent ofS,. Relation (5)
may be directly integrated giving the implicit dependence of
SonT:

) distance
b) Damping

_ 4P S(B+PS)| 4$-9)
" 152 SB+PS)| 1B

®

time

Note that expressiof8) provides an analytical description
of the time-dependent process of the selection of the solitary
wave(4). As was mentioned in Ref5], for sufficiently large
distance disturbances the backward diffusion terms,), becomes
dominant, and leads to blow-up. Equati@) does not allow
us to capture this subtle effect; probably, the asymptotic pro-

W int ted in studving localized solut .hcedure should be carried further to describe the phenomenon.
€ are interested in studying locallized Solutions vanish-= , 1ne case of selection, if we additionally assume

ing together with its derivatives 4£|—. Then the leading =2aD/%, the asymptotic dissipative solitqd) will tend to

order solution is the exact travelling solitary wave solution of Ed) [9,10].
6 Noteworthy is that this cannot be attained from infinitesimal
no=—S?cosh 2(S&), S=S(T). (4) initial disturbances5]. The result of our time-dependent
a analysis agrees with the results of earlier stability analyses of
guasistationary solitary waved,7].
In the next section, we analyze E(L) numerically to

FIG. 1. Blow-up(a) and dampingb) of the initial conditions.

Here S(T) is a slowly varying function, and/=4c .
From the solvability condition for nonsingular solution of

Eq. (2) at ordere [14] follows: compare with analytical results given in this section. We are
‘ ' especially interested in the process of selection of solitary
8 waves.
S’T=1—5§(B+PSZ). (5)

I1l. NUMERICAL STUDY OF SOLITARY WAVES

Here To simulate Eq.(1), the following numerical technique

4/ ¢ has been employed. We define the typical wave nurkber
P= 7( G—E—SD). (6) =+/b/2d corresponding to the most unstable linear mode in
a Eq. (1). The corresponding wavelength is=2mx/k;. The

We omit standard arguments of the asymptotic procedur%ength of spatial domain was chosen to be £56i.e., rather

o ; . , : ong. At the same time, the number of discretization points
giving only its short sketch. Function,(£,T) is a solution S X
of linear inhomogeneous ODE; it will contain therefore free WaS chosen to be. 4096, "% is covered by 16 points. The
parameters depending drsuch asS(T) in the leading order latter ensures fair resolution of_t'he whole solutions com-
problem. Its definition allows us to satisfy solvability condi- puted. Periodic boundary conditions have been used for

tion in the next order problem and to avoid secular terms ir?imulations. The pseudospectral technique was employed for

the asymptotic expansion. Higher order approximations maﬂwe spatial dlscr_etlzatlon and the Runge-Kutta fourth order
cheme for the time advance. The time step was chosen to be

be studied similarly. 00L Th ith ller ti db uti
Equation(6) allows us to find the variation of the ampli- =~~~ e tests with smaller time steps and better resolution

tude and velocity of the soliton in time. The behavior®f gave indistinguishable results. The control of the simulations
depends on the signs & and P and oﬁ the value 08, in the Fourier space shows the very good resolution of the

=S(T=0). Indeed, when botiB and P are positiveS di- computed solutions. . : . .
verges while for both negative values it will vanish. Fr Note that the previous section describes the evolution of

. . oo soliton’s parameters; so, formally, we can apply the obtained
<0, P>0 the parametes vanishes ifSy<<{—B/P while it e . . :
. : It ly to th tial dat the f f solitons. It
diverges ifS,= \—BIP. results only to the initial data in the form of solitons. It is

. . . clear, however, that this type of initial conditions is very
bl In the .caseupf dlv?rﬁegce_, the explicit expression of therestrictive. We therefore use general localized initial condi-
ow-up time (“time-of-life” ) is tions (usually, in the from of GaussianSinceb,d,o are

5 small, at the first stage, the dynamics of the initial conditions
— 4P In SoP ‘+ 4 _ (7) is expected to be governed by the KdV equation and the

1582 |B+P 5(2)’ 158 520 solitons will be formed on this preliminary stage. The selec-
tion process, which is the subject of our interest, is expected
Note that in this case the initial assumption about slow evoto appear at later times, when solitons are already formed.
lution of soliton’s parameters is violated: near blow-up, soli-Therefore, we can compare the proposed theory with numer-
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FIG. 2. Selection of solitary wave from “below’: initial condi- _ F!G- 3. Selection of solitary wave from “above”; initial condi-
tion is a Gaussian profile with amplitude 0.3 and width 36 units; i iS @ Gaussian profile with amplitude 1 and width 12 units; only
only a part of the long spatial domain is shown here. a part ob the long spatial domain is shown here.

influence of the dissipative non-KdV terms is small at this
ics even for rather arbitrary localized initial conditions. stage. This may be seen by comparison of solutions of Eq.

First, it has been checked that the damping, and the terg), shown as solid lines, with pure KdV casB=D=3
dency to blow-up have been observed at the values of coet= g, shown by dashed lines. At later stages the initial pulse
ficients found in the previous section. Numerical results argransforms into a train of the solitary waves. For nonzero
shown on Fig. 1. For the damping=0.1, a=1, B=—1  gmpjitude and velocity of each solitary wave tend to the
<0,c=1,D=6/5%X=-2, soP=-72/7<0. In the case qjyes 0.585 and 0.38 in agreement with the theory of single
of blow-up,e=0.1,a=1, B=1>0, ¢c=1, D=6/52=2,  golitary wave selection, while each of three KdV solitons
so P=24/7>0. For the blow-up, we found that the pulse continues propagation with its own amplitude and velocity.
tends to grow rapidly at the time rather close to the pre- ynequal spacing between equally high crests reflects the
dictedt* =T*/e from Eq.(7) (details of numerics are omit- original separation of the solitons in the KdV stage when
ted. As was mentioned, the description of the fast blow-uphigher solitons travel faster. The tail behind the train of soli-
process formally contradicts the initial assumptions of slowtary waves appear as a result of long wave instabjibty5].
variation of soliton’s parameters. It is remarkable that the‘rhese irregu|ar waves cannot be described by the theory pro-
asymptotic procedure captures blow-up, and is valid muchyosed in the previous section. The solitary waves have
further than formal parameter range. higher velocity than the velocity of growing wave packet. As

Selection of dissipative solitons occurringBt>0,P<0. 3 result, the solitons escape the destructive influence of the
We present here the results of simulations for the followingai| behind. This mechanism was reported in Rdf3] in

parameter values=0.1, a=1, B=1>0, c=1, D=6/5,  context of close dynamic equation. We see on the last stages
% =—2; therefore,P=—72/7. The asymptotic valuB. of  that the magnitude of the tail saturates. All these structures
S(T) at T—oe, obtained from Eqs(4), (6), is S.=—B/P  are quite well resolved, robust and similar to those found in
=0.312. The asymptotic amplitude of the solitary wave isRefs.[5,15].

6cS>/a=0.583, and its asymptotic velocity i¥=4c < The selection process realized from “above’” is shown in
=0.389. We consider both the selection occurring from “be-Fig. 3 when initial Gaussian pulse has magnitude(01583
low” when the magnitude of an initial Gaussian pulse isand width 12. Two equal solitary waves with amplitude
smaller than that of the eventually selected solitons, Fig. 20.585 and velocity 0.38 appear as a resultleéreaseof the

and the selection from “above” when the selected solitonsmagnitude of the initial pulse. Again the comparison with
amplitude is smaller than that of the initial pulse magnitude pure KdV case is shown by dashed lines. All features of the
Fig. 3. Note that only a part of long spatial domain is shownselection process are similar to the selection from “below.”
on Figs. 2 and 3 to make the evolving structures distinguish- Note that the localization of the disturbances in space has
able. One can see in Fig. 2 that up to the tithel20 an a crucial role here. If we consider conventional small-
initial Gaussian pulse with the magnitude €.8.583 and amplitude noise as initial condition, similar to those consid-
width 36 breaks into a train of three localized pulses alignedered in Ref.[5], the growing long-wavelength disturbances
in row of decreasing magnitude. Due to smallnesg othe  will destroy the possible formation of the solitary wavése
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results of numerical simulations are not shown heBesides the asymptotic technique is valid out of the range of its for-
this, it is important to mention the significance of the peri- mal applicability. In the case of selection, the theory predicts
odic boundary conditions. After sufficiently long time, soli- the amplitude and velocity of the selected solitons with ex-
tons, moving faster than the irregular waves, will reach thecellent accuracy. It is interesting that in this case the selec-
end of the computational domain, will appear at the begintion of the solitary waves is accompanied by development of
ning of the domain, will further reach and collide with the irregular waves behind the solitary waves. The solitons travel
irregular waves, and will be ultimately destroy@wt shown faster, and escape therefore the destruction by th¢1t3jl
herg. This is the reason for consideration of long spatial As was found in Ref[5], for small dispersior{small c)
interval — to allow the waves to evolve naturally and to the solitary waves fall in the range of blow-up, and therefore
separate, without collision. Simulations of Ed) with other  cannot materialize. We conclude that for sufficiently strong
values of parameters such thAt>0,P<<0, which are not dispersionwhen KdV-part is a leading player, as considered
reported here, show the same features of the selection prbere, the solitary waves can materialize. Besides this, we

cess as described above. revealed that solitary waves and irregular waves found in
Refs.[5,15] may coexist simultaneously, being separated in
IV. CONCLUSION space.

We considered Eql) in the case when it could be re-
garded as a perturbed KdV equation, i.e., wied,o are
small. Solutions in the form of soliton with slowly varying  The authors acknowledge fruitful discussions with A.B.
parameters are considered. Solvability condition, based oBEzersky, V.D. Sobolev, and V.l. Nekorkin. A.V.P. wishes to
standard asymptotic technique, leads to explicit equation deexpress his gratitude to the DGICYT of the Ministerio de
scribing the evolution of soliton’s parameters. It turns outEducacim y Cultura (Spain for their support at Instituto
that three scenario are possible: blow-up, damping, and séluridisciplinar, UCM. This research has been supported by
lection. In the case of blow-up, the asymptotic techniqueDGIGYT (Spairn) under Grant PB96- 599, by EU under Net-
predicts the “time-of-life” which is quite close to numeri- work Grant No. FRB FM RX-CT96-10, by the INTAS under
cally evaluated one. We conclude therefore that in this cas&rant No. 99-0167.
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